2016年考研数二真题及答案解析

一、选择题: 1~8 小题,每小题 4 分,32 分,下列每小题给出的四个选项中,只有一项符合题目要求的

- A. a1, a2, a3+
- B. a₂, a₃, a₁ ↔
- C. a2, a1, a3+
- D. $a_3, a_2, a_1 +$

【答案】B₽

【解析】₽

所以,从低到高的顺序为 a₂,a₃,a₁选 B.↓

(2) 已知函数
$$f(x) = \begin{cases} 2(x-1), x < 1 \\ \ln x, x \ge 1 \end{cases}$$
,则 $f(x)$ 的一个原函数是()。 $+$

A.
$$F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x - 1), & x \ge 1 \end{cases}$$

B.
$$F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x + 1) - 1, & x \ge 1 \end{cases}$$

C.
$$F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x + 1) + 1, & x \ge 1 \end{cases}$$

D.
$$F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x - 1) + 1, & x \ge 1 \end{cases}$$

【答案】D₽

【解析】对函数 f(x) 做不定积分可得原函数, $\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx = x \ln x - x + C$,因此选择 D. θ

(3) 反常函数①
$$\int_{-\infty}^{0} \frac{1}{x^2} e^{\frac{1}{x}} dx$$
,② $\int_{0}^{+\infty} \frac{1}{x^2} e^{\frac{1}{x}} dx$ 的敛散性为() \sim

- A. ①收敛, ②收敛↔
- B. ①收敛, ②发散↓
- C. ①发散, ②收敛₽
- D. ①发散, ②发散~

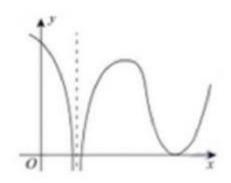
【答案】B↩

【解析】①
$$\int_{-\infty}^{0} \frac{1}{x^2} e^{\frac{1}{x}} dx = -\int_{-\infty}^{0} e^{\frac{1}{x}} d\frac{1}{x} = -[\lim_{x\to 0^{-}} e^{\frac{1}{x}} - \lim_{x\to \infty} e^{\frac{1}{x}}] = -(0-1) = 1$$
收敛。 $+$

②
$$\int_0^{\infty} \frac{1}{r^2} e^{\frac{1}{x}} dx = -\int_0^{+\infty} e^{\frac{1}{x}} d\frac{1}{r} = -e^{\frac{1}{x}} \Big|_0^{+\infty} = -\left[\lim_{x \to \infty} e^{\frac{1}{x}} - \lim_{x \to 0^+} e^{\frac{1}{x}}\right] = +\infty$$
 发散。 $+\infty$

所以,选 B.₩

(4) 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续,其导函数的图形如图所示,则() u



- A. 函数 f(x) 有 2 个极值点,曲线 y = f(x) 有 2 个拐点 \downarrow
- B. 函数 f(x) 有 2 个极值点,曲线 y = f(x) 有 3 个拐点↓
- C. 函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 1 个拐点↓
- D. 函数 f(x) 有 3 个极值点,曲线 y = f(x) 有 2 个拐点↓

【答案】B↩

【解析】根据图像可知导数为零的点有 3 个,但是最右边的点左右两侧导数均为正值,因此不是极值点,故有 2 个极值点,而拐点是一阶导数的极值点或者是不可导点,在这个图像上,一阶导数的极值点有 2 个,不可导点有 1 个,因此有 3 个拐点.→

L.

卡巴学长

- (5)设函数 $f_i(x)(i=1,2)$ 具有二级连续导数,且 f_i " (x_0) < 0(i=1,2) ,若两条求曲线 $y=f_i(x)(i=1,2)$ 在点 (x_0,y_0) 处具有公切线 y=g(x) ,且在该点曲线 $y=f_1(x)$ 的曲率大于曲线 $y=f_2(x)$,则在 x_0 的某个邻域内,有()。
- A. $f_1(x) \le f_2(x) \le g(x) \ne 0$
- B. $f_2(x) \le f_1(x) \le g(x) +$
- C. $f_1(x) \le g(x) \le f_2(x) +$
- D. $f_2(x) \le g(x) \le f_1(x) + f_2(x)$

【答案】A₽

【解析】因 $y=f_1(x)$ 与 $y=f_2(x)$ 在 (x_0,y_0) 有公切线,则 $f_1(x_0)=f_2(x_0)$, $f_1'(x_0)=f_2'(x_0)$ 4

又 y=f₁(x)与 y=f₂(x) 在(x₀,y₀)处的曲率关系为 k₁>k₂,↓

从而在 x_0 的某个领域内 $f_1(x)$ 与 $f_2(x)$ 均为凸函数,故 $f_1(x) \leq g(x)$, $f_2(x) \leq g(x)$, 排除 C,D. \checkmark

♦ $F(x)=f_1(x)-f_2(x)$, M $F(x_0)=0$, $F'(x_0)=0$, $F''(x_0)<0$.

由极值的第二充分条件得 x=x。为极大值点。→

则 $F(x) \leq F(x_0) = 0$,即 $f_1(x) \leq f_2(x)$, \leftarrow

综上所述, 应选 A.₽

(6) 已知函数
$$f(x,y) = \frac{e^x}{x-y}$$
,则(). ψ

A.
$$f_{x}' - f_{y}' = 0$$

B.
$$f_{x}' + f_{y}' = 0$$

C.
$$f_{x}' - f_{y}' = f +$$

D.
$$f_{x}^{'} + f_{y}^{'} = f +$$

【答案】D₽

【解析】↩

$$f_{x}' = \frac{e^{x}(x-y) - e^{x}}{(x-y)^{2}}, f_{y}' = \frac{0 + e^{x}}{(x-y)^{2}} = \frac{e^{x}}{(x-y)^{2}}$$

$$\therefore f_{x}' + f_{y}' = \frac{e^{x}(x-y) - e^{x} + e^{x}}{(x-y)^{2}} = \frac{e^{x}}{x-y} = f$$

选 D.₽

- (7) 设 A.B.是可逆矩阵,且 A.5.B.相似,则下列结论错误的是() \sim
- A. A^T与B^T相似↓
- B. A⁻¹与 B⁻¹相似↔
- C. $A+A^T$ 与 $B+B^T$ 相似 ψ
- D. A+A⁻¹与B+B⁻¹相似↔

【答案】C↩

【解析】↓

因为 A与 B 相似,因此存在可逆矩阵 P,使得 $P^{-1}AP = B$,于是有: φ

$$(P^{-1}AP)^T = P^TA^T(P^{-1})^T = P^TA^T(P^T)^{-1} = B^T \;, \;\; \text{ID} \; A^T \sim B^T \;, \;\; \text{\sim} \; B^T \;, \;\;$$

$$(P^{-1}AP)^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P = B^{-1}$$
, 因此 $A^{-1} \sim B^{-1}$,

$$P^{-1}(A+A^{-1})P=P^{-1}AP+P^{-1}A^{-1}P=B+B^{-1},\ \boxtimes \&\ A+A^{-1}\sim B+B^{-1},\ _{\#}$$

而 c 选项中, $P^{-1}A^TP$ 不一定等于 B^T ,故 c 不正确,选择 $C \rightarrow P$

(8) 设二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 的正、负惯性指数分

别为1,2,则().₽

- A. a >1+
- B. a < -2+
- C. $-2 < \alpha < 1 + \beta$
- D. a = 1 或. a = -2 ₽

【答案】C↩

【解析】↩

二次型矩阵
$$A = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix}$$

$$|\lambda E - A| = \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & -1 \\ -1 & -1 & \lambda - a \end{vmatrix} = (\lambda - a - 2) \begin{vmatrix} 1 & 1 & 1 \\ -1 & \lambda - a & -1 \\ -1 & -1 & \lambda - a \end{vmatrix}$$

$$= (\lambda - a - 2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda - a + 1 & 0 \\ 0 & 0 & \lambda - a + 1 \end{vmatrix} = (\lambda - a - 1) (\lambda - a + 1)^2 = 0$$

∴ A 的特征值为 λ = a+2, λ, = λ = a-1

::二次型的正、负惯性指数分别为1,2,则
$$\begin{cases} a+2>0 \\ a-1<0 \end{cases}$$

所以, -2<a<1.所以, 选 C.₩

二、填空题 9~14 小题,每小题 4 分,共 24 分,请将所选项前的字母填写在答题纸制 定位置上

【答案】
$$y = x + \frac{\pi}{2}$$
 \forall

【解析】↓

$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left[\frac{x^3}{x(1+x^2)} + \frac{\arctan(1+x^2)}{x} \right] = 1,$$

$$b = \lim_{x \to \infty} (y - kx) = \lim_{x \to \infty} \left[\frac{x^2}{1+x^2} - x + \arctan(1+x^2) \right] = \frac{\pi}{2},$$

所以,斜渐近线方程为 $y = x + \frac{\pi}{2}$. ↓

(10)
$$\lim_{n \to \infty} \frac{1}{n^2} \left(\sin \frac{1}{n} + 2 \sin \frac{2}{n} + L + n \sin \frac{n}{n} \right) = \underline{\qquad}$$

【答案】 sin 1-cos 1₽

【解析】↓

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} \sin \frac{1}{n} + \frac{2}{n} \sin \frac{2}{n} + L + \frac{n}{n} \sin \frac{n}{n} \right)$$

$$= \int_{0}^{1} x \sin x dx = \sin 1 - \cos 1.$$

(11) 以 $y = x^2 - e^x$ 和 $y = x^2$ 为特解的一阶非齐次线性微分方程为

【答案】 y'- y = 2x - x² +

【解析】x²-(x²-e*)为对应齐次方程组的解,即 e*是 y/-y=0 的解, ↔

设非齐次方程为 y'-y=f(x), 将 $y=x^2$ 代入得 $f(x)=2x-x^2$,

所求方程为 $y'-y=2x-x^2$.

(12) 已知函数 f(x) 在 $(-\infty, +\infty)$ 上连续, $f(x) = (x+1)^2 + 2\int_0^x f(t)dt$,则当 $n \ge 2$ 时,

 $f^{(n)}(0) = \underline{\hspace{1cm}}$

【答案】5.2*-1↓

【解析】↓

$$\begin{split} f(x) &= (x+1)^2 + 2 \int_0^x f(t) dt \\ f'(x) &= 2(x+1) + 2 f(x) \\ f''(x) &= 2 + 2 f'(x), f'''(x) = 2 f''(x) \\ f^{(n)}(x) &= 2^{n-2} f''(x) (n \ge 2) \\ f(0) &= 1, f'(0) = 2 + 2 = 4, f''(0) = 10. \\ f^{(n)}(0) &= 2^{n-1} g! 0 = 5 g2^{n-1} \end{split}$$

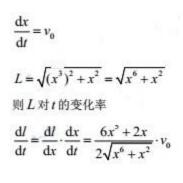
卡巴字长

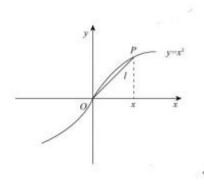
(13) 已知动点 P在曲线 $y=x^3$ 上运动,记坐标原点与点 P间的距离为 l. 若点 P 的横坐标对时间的变化率为常数 V_0 ,则当点 P 运动到点 (1,1) 时, l 对时间的变化率是

【答案】2√2V₀↔

【解析】₽

设P的坐标为 (x,x^3) ,则由题意





$$\frac{dl}{dt}\Big|_{x=1} = \frac{8}{2\sqrt{2}} \mathbb{D}_0 = 2\sqrt{2}v_0 + 1$$

(14) 设矩阵
$$\begin{pmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{pmatrix}$$
与 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ 等价,则 $a =$ _______

【答案】2₽

【解析】↩

$$A = \begin{pmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{pmatrix} = B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
等价

 $\therefore r(A) = r(B)$

$$\therefore B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\therefore r(B)$

$$|A|=0$$
, 即 $\begin{vmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{vmatrix} = 0$, 得 $a=2$ 或 $a=-1$

 $\therefore a = 2$

三、解答题, 15~23 小题, 共 94 分, 请将所选项前的字母填写在答题纸制定位置上, 解答应写出文字说明、证明过程或演算步骤。

(15)(本题满分 10 分) ₽

求极限 $\lim_{x\to\infty} (\cos 2x + 2x \sin x)^{x^{\frac{1}{4}}}$.~

【答案】e^{1/3}↓

【解析】↓

$$\lim_{x\to 0} (\cos 2x + 2x\sin x)^{\frac{1}{x^4}}$$

$$=\lim_{x\to 0}e^{\frac{\cos 2x+2x\sin x-1}{x^4}}$$

$$= \lim_{x \to 0} e^{\frac{1 - \frac{4x^2}{2} + \frac{2^4x^4}{4!} + 2x\left(x - \frac{x^3}{3!}\right) - 1 + x(x^4)}{\frac{1}{2}}$$

(16)(本题满分 10 分) ↔

设函数
$$f(x) = \int_0^1 |t^2 - x^2| dt(x > 0)$$
,求 $f'(x)$ 并求 $f(x)$ 的最小值. $+$

【答案】
$$f'(x) = 4x^2 - 2x \neq$$

$$f(\frac{1}{2})$$
为最小值,最小值为 $\frac{1}{4}$ ψ

【解析】↩

$$f(x) = \int_0^1 |t^2 - x^2| dt (x > 0) +$$

当 0<x<1 时, ₽

$$\begin{split} f_1 x_1 &= \int_0^x |t^2 - x^2| \, dt = \int_0^x (x^2 - t^2) \, dt + \int_x^1 (t^2 - x^2) \, dt \\ &= x^3 - \frac{1}{3} x^3 + \int_x^1 t^2 \, dt - x^2 (1 - x) \\ &= \frac{4}{3} x^3 - x^2 + \frac{1}{3} \end{split}$$

故
$$f'|x|=4x^2-2x$$

$$x \ge 1$$
, $f(x) = \int_0^1 (x^2 - t^2) dt = x^2 - \frac{1}{3}$

故
$$f'(x) = 2x$$
,

$$f'(x) = \begin{cases} 4x^2 - 2x, & 0 < x < 1 \\ 2x, & x \ge 1 \end{cases}$$

$$0 < x < 1, 2f'(x) = 4x^2 - 2x = 0, 3f(x) = \frac{1}{2}$$

$$f''(x) = 8x - 2$$
, $f''(\frac{1}{2}) = 2 > 0$.

$$\therefore x = \frac{1}{2}$$
 为最小值点,最小值为 $f(\frac{1}{2}) = \frac{1}{4}$.

$$∴ f(x)$$
的最小值为 $\frac{1}{4}$. \forall

(17)(本题满分10分) ₽

已知函数 z = z(x,y) 由方程 $(x^2 + y^2)z + \ln z + 2(x + y + 1) = 0$ 确定 z = z(x,y) 的极值 +

【答案】极大值为z(-1,-1)=1→

【解析】↓

(1) 方程
$$(x^2+y^2)z + \ln z + 2(x+y+1) = 0$$
 ① $+$

两边对 x, y 分别求偏导得₽

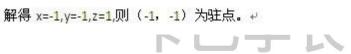
$$2xz + (x^2 + y^2)\frac{\partial z}{\partial x} + \frac{1}{z}\frac{\partial z}{\partial x} + 2 = 0$$

$$2yz + (x^2 + y^2)\frac{\partial z}{\partial y} + \frac{1}{z}\frac{\partial z}{\partial y} + 2 = 0$$

$$\Rightarrow \frac{\partial z}{\partial x} = 0$$
, $\frac{\partial z}{\partial y} = 0$, $\#\begin{cases} xz + 1 = 0 \\ yz + 1 = 0 \end{cases}$, 解得 z=0 (含) 或 y=x.√

∴当 x≠0 时,
$$\begin{cases} z = \frac{1}{-x} \text{ 代入原式}(x^2 + y^2)z + \ln z + 2(x + y + 1) = 0 得 \varphi \\ y = x \end{cases}$$

$$2x^2 \times (-\frac{1}{x}) + \ln(-\frac{1}{x}) + 2(2x+1) = 0$$



(2)②式<u>两边对 x,y</u>分别求偏导得, ₽

$$2z + 2x\frac{\partial z}{\partial x} + 2x\frac{\partial z}{\partial x} + (x^2 + y^2)\frac{\partial^2 z}{\partial x^2} + (-\frac{1}{z^2})(\frac{\partial z}{\partial x})^2 + \frac{1}{z}\frac{\partial^2 z}{\partial x^2} = 0$$

$$2x\frac{\partial z}{\partial y} + 2y\frac{\partial z}{\partial x} + (x^2 + y^2)\frac{\partial^2 z}{\partial x \partial y} - \frac{1}{z^2}g\frac{\partial z}{\partial y}g\frac{\partial z}{\partial x} + \frac{1}{z}\frac{\partial^2 z}{\partial x \partial y} = 0$$

③式两边对 y 求偏导得₽

$$2z + 2y\frac{\partial z}{\partial y} + 2y\frac{\partial z}{\partial y} + (x^2 + y^2)\frac{\partial^2 z}{\partial y^2} - \frac{1}{z^2}(\frac{\partial z}{\partial y})^2 + \frac{1}{z}\frac{\partial^2 z}{\partial y^2} = 0$$

将 x=-1, y=-1, z=1 代入⑤⑥得↔

$$A = \frac{\partial^2 z}{\partial x^2} = -\frac{2}{3}, B = \frac{\partial^2 z}{\partial x \partial y} = 0, C = \frac{\partial^2 z}{\partial y^2} = -\frac{2}{3}.$$
$$AC - B^2 = \frac{4}{9} > 0, A < 0$$

∴x=-1,y=-1 为极大值点,极大值为 z=1.↓

(18)(本题满分10分)→

设 D 是由直线 y=1, y=x, y=-x 围成的有界区域,计算二重积分 $\iint_D \frac{x^2-xy-y^2}{x^2+y^2} dxdy$. +

【答案】
$$1-\frac{\pi}{2}$$
 ψ

【解析】₩

①积分区域如图:

②D 关于 y 轴对称而
$$\frac{xy}{x^2 + y^2}$$
 与 $\frac{y^2}{x^2 + y^2}$ 关于 x 为偶函数.

$$\therefore \iint_{D} \frac{x^2 - xy - y^2}{x^2 + y^2} dxdy$$

$$= \iint_{D} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dxdy - \iint_{D} \frac{xy}{x^{2} + y^{2}} dxdy$$

$$=2\iint_{D_1} \frac{x^2 - y^2}{x^2 + y^2} dxdy - 0$$

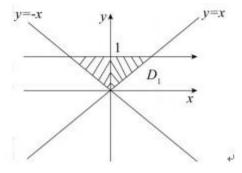
$$=2\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}d\theta\int_{0}^{\frac{1}{\sin\theta}}\frac{r^{2}\cos^{2}\theta-r^{2}\sin^{2}\theta}{r^{2}}r\,\mathrm{d}r$$

$$=2\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta \int_{0}^{\frac{1}{\sin\theta}} r(\cos^{2}\theta - \sin^{2}\theta) dr$$

$$=2\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\cos^2\theta - \sin^2\theta)\frac{1}{2}r^2\begin{vmatrix} \frac{1}{\sin\theta} & d\theta \end{vmatrix}$$

$$=2\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\cos^2\theta - \sin^2\theta)\frac{1}{\sin^2\theta}d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\cot^2d\theta - \frac{\pi}{4}$$

$$= \cot \theta \frac{\left| \frac{\pi}{2} - \frac{\pi}{2} \right|}{\frac{\pi}{4}} = 1 - \frac{\pi}{2}.$$



(19)(本题满分10分)~

已知函数 $y_1(x) = e^x$, $y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y''-(2x+1)y'+2y=0的两个

解,若u(-1) = e, u(0) = -1,求u(x) 并写出微分方程的通解。

【答案】 $y(x) = c_1 e^x + c_2 (2x+1) e^x$, D_1, D_2 为任意实数 \neq

【解析】↓

$$y,(x) = (u'+u)e^x, y,''(x) = (u''+2u'+u)ex, 代入方程得$$

(2x-1)u'' + (2x-3)u' = 0,

 $\Rightarrow p = u', p' = u'', y (2x-1)p' + (2x-3)p = 0$

解得
$$p = c(2x-1)e^{-x}$$
, 即 $\frac{du}{dx} = c(2x-1)e^{-x}$,

解得 $u(x) = -c(2x+1)e^{-x} + c_1$

又u(-1)=e, u(0)=-1,则 $u(x)=-(2x+1)e^{-x}$,

方程的通解为 $y(x) = c_1 e^x + c_2 (2x+1) e^{-x}$.

(20)(本题满分 11 分) ₽

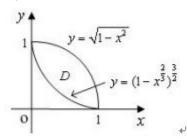
设
$$D$$
 是曲线 $y=\sqrt{1-x^2}$ $(0 \le x \le 1)$ 与 $\begin{cases} x=\cos^3 t \\ y=\sin^3 t \end{cases}$ $(0 \le t \le \frac{\pi}{2})$ 围成的平面区域,求 D 绕 x 轴

转一周所得旋转体的体积和表面积₩

【答案】体积为
$$V = \frac{18\pi}{35}$$
,表面积为 $S = \frac{16\pi}{5} \neq$

【解析】D 的图形如下图所示,D 绕 x 轴旋转一周所得旋转体的体积可看作两个体积之差,

即心



 $V = \pi \int_0^1 \left(\sqrt{(-x^2)} \right)^2 dx - \pi \int_0^1 \left[\left(1 - x^{\frac{2}{3}} \right)^{\frac{3}{2}} \right]^2 dx = \pi \int_0^1 \left(1 - x^2 \right) dx - \pi \int_0^1 \left(1 - x^{\frac{2}{3}} \right)^3 dx$ $= \pi \times \frac{2}{3} - \pi \int_{\frac{\pi}{2}}^0 \sin^6 t \cdot 3 \cos^2 t \cdot \left(-\sin t \right) dt = \frac{2}{3} \pi - 3\pi \int_0^{\frac{\pi}{2}} \sin^7 t \left(1 - \sin^2 t \right) dt$ $= \frac{2}{3} \pi - 3\pi \times \left(1_7 - 1_9 \right) = \frac{2}{3} \pi - 3\pi \times \frac{16}{9 \times 7 \times 5}$ $= \frac{18\pi}{35}$

表面积 $A = A_1 + A_2$, 其中

$$A_{1} = 2\pi \int_{0}^{1} y \sqrt{1 + y^{2}(x)} dx = 2\pi \int_{0}^{1} \sqrt{1 - x^{2}} \times \frac{1}{\sqrt{1 - x^{2}}} dx = 2\pi,$$

$$\text{th} \begin{cases} x = \cos^{3} t \\ y = \sin^{3} t \end{cases} (0 \le t \le \frac{\pi}{2}) \not\Leftrightarrow y = \left(1 - x^{\frac{2}{3}}\right)^{\frac{3}{2}}, \quad 0 \le x \le 1,$$

$$A_{2} = 2\pi \int_{0}^{1} y \sqrt{1 + y^{2}(x)} dx = 2\pi \int_{0}^{1} \left(1 - x^{\frac{2}{3}}\right)^{\frac{3}{2}} \times x^{-\frac{1}{3}} dx = -6\pi \int_{\frac{\pi}{2}}^{0} \sin^{4} t \cos t dt$$

$$= 6\pi \int_{0}^{\frac{\pi}{2}} \sin^{4} t d(\sin t) = 6\pi \times \frac{1}{5} \sin^{5} t \Big|_{0}^{\frac{\pi}{2}} = \frac{6\pi}{5}$$

$$\text{th} \quad A = 2\pi + \frac{6\pi}{5} = \frac{16\pi}{5} \leftrightarrow 0$$

(21)(本题满分 11 分) ₽

已知函数 f(x) 在 $[0, \frac{3\pi}{2}]$ 上连续,在 $(0, \frac{3\pi}{2})$ 内是函数 $\frac{\cos x}{2x-3\pi}$ 的一个原函数,且 f(0)=0

(1) 求
$$f(x)$$
在区间 $[0,\frac{3\pi}{2}]$ 上的平均值; \neq

(2) 证明
$$f(x)$$
 在区间 $(0, \frac{3\pi}{2})$ 存在唯一零点。 $+$

【答案】(1)
$$\frac{1}{3\pi}$$
 (2) 证明略.↓

【解析】↓

(1) 由題设知
$$f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt + c$$
. $f(0) = 0$. $c = 0 \Rightarrow f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt$

則函数平均值为 $\frac{\int_0^{\frac{3}{2}\pi} f(x) dx}{\frac{3}{2}\pi - 0} = \frac{2}{3\pi} \int_0^{\frac{3}{2}\pi} dx \int_0^x \frac{\cos t}{2t - 3\pi} dt = \frac{2}{3\pi} \int_0^{\frac{3}{2}\pi} dt \int_t^{\frac{3}{2}\pi} \frac{\cos t}{2t - 3\pi} dx$

$$= \frac{2}{3\pi} \int_0^{\frac{3}{2}\pi} \frac{\cos t}{2t - 3\pi} \left(\frac{3}{2}\pi - t \right) dt = -\frac{1}{3\pi} \int_0^{\frac{3}{2}\pi} \cos t dt$$

$$= \frac{-1}{3\pi} \sin t \Big|_0^{\frac{3}{2}\pi} = \frac{1}{3\pi}$$

$$(2) : f'(x) = \frac{\cos x}{2x - 3\pi}$$

由题意知,显然
$$f\left(\frac{\pi}{2}\right) < 0$$

而
$$f\left(\frac{3\pi}{2}\right) = \int_0^{\frac{3}{2}\pi} \frac{\cos x}{2x - 3\pi} dx \quad x = \frac{3}{2}\pi - t \frac{1}{2} \int_0^{\frac{3}{2}\pi} \frac{\sin t}{t} dt$$

$$= \frac{1}{2} \int_0^{\pi} \frac{\sin t}{t} dt + \frac{1}{2} \int_{\pi}^{\frac{3}{2}\pi} \frac{\sin t}{t} dt$$

$$= \frac{1}{2} \int_0^{\pi} \frac{\sin t}{t} dt + \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} \frac{\sin t}{t} dt - \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{\sin u}{\pi + u} du$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} \left(\frac{1}{t} - \frac{1}{\pi + t}\right) \sin t dt + \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} \frac{\sin t}{t} dt > 0$$
由零点函理知: $f(x)$ 在 $\left(\frac{\pi}{2}, \frac{3}{2}\pi\right)$ 内有唯一的零点。

综上知: $f(x)$ 在 $\left(0, \frac{3}{2}\pi\right)$ 有唯一零点。

(22)(本题满分 11 分) ₽

设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1-a \\ 1 & 0 & a \\ a+1 & 1 & a+1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 0 \\ 1 \\ 2a-2 \end{pmatrix}$, 且方程组 $Ax = \beta$ 无解, φ

- (1) 求a的值₽
- (2) 求方程组 $A^T A x = A^T \beta$ 的通解 \sim

【答案】(1) $\alpha = 0$ (2) 通解为 $x = k(0, -1, 1)^T + (1, -2, 0)^T$,其中 k 为任意常数 \mathcal{A} 【解析】 \mathcal{A}

(1) ₽

增广矩阵为:
$$(A,\beta) = \begin{pmatrix} 1 & 1 & 1-a & 0 \\ 1 & 0 & a & 1 \\ a+1 & 1 & a+1 & 2a-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1-a & 0 \\ 0 & -1 & 2a-1 & 1 \\ 0 & -a & a^2+a & 2a-2 \end{pmatrix}$$

方程组无解,那么系数矩阵的秩与增光矩阵的值不同,因此a=0.

(2) 将
$$a = 0$$
 代入可得 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$

因此可得
$$A^TA = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}, A^T\beta = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix}$$

因此可得
$$(A^T A, A^T \beta) = \begin{pmatrix} 3 & 2 & 2 & -1 \\ 2 & 2 & 2 & -2 \\ 2 & 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 2 & 2 & -1 \\ 2 & 2 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

故可得 $\begin{cases} 3x_1 + 2x_2 + 2x_3 = -1 \\ 2x_1 + 2x_2 + 2x_3 = -2 \end{cases}$,因此可得方程组的一个特解为 $(1, -2, 0)^T$,令 $x_3 = 1$ 得到了

齐次解为: (0,-1,1)", 因此得到了方程组的通解为: ↔

$$x = k(0,-1,1)^T + (1,-2,0)^T$$
, 其中 k 为任意常数. \downarrow

(23)(本题满分 11 分) ₽

已知矩阵
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(I) 求A99; ₽

(II) 设 3 阶矩阵 $B=(\alpha_1,\alpha_2,\alpha_3)$ 满足 $B^2=BA$.记 $B^{100}=(\beta_1,\beta_2,\beta_3)$,将 β_1,β_2,β_3 分别 表示成 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合.+

【答案】(I)
$$A^{99} = \begin{pmatrix} -2+2^{99} & 1-2^{99} & 2-2^{98} \\ -2+2^{100} & 1-2^{100} & 2-2^{99} \\ 0 & 0 & 0 \end{pmatrix}$$

(II)
$$\beta = (-2 + 2^{99})\alpha_1 + (-2 + 2^{100})\alpha_2; \varphi$$

$$\beta_2 = (1-2^{99})\alpha_1 + (1-2^{100})\alpha_2$$
;

$$\beta_3 = (2-2^{98})\alpha_1 + (2-2^{99})\alpha_2 +$$

【解析】↩

(I)利用相似对角化,由|AE-A|=0得到特征值为0,-1,-2, ₽

当
$$\lambda=0$$
 时,代入 $\lambda E-A$ 中,求解方程组 $(\lambda E-A)X=0$ 的解就是特征向量,即 $r_1=\begin{pmatrix}3\\2\\2\end{pmatrix}$

同理得到其他的两个特征向量分别为。
$$\lambda=-1$$
对应的特征向量为 $r_2=\begin{pmatrix}1\\1\\0\end{pmatrix}$, $\lambda=-2$ 对应的

特征向量为
$$r_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
, ₽

设
$$P = (r_1, r_2, r_1) = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix}$$
,则有 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$,因此可得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

因此有₽

$$A^{99} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}^{99} P^{-1} = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2^{99} \end{pmatrix} \begin{pmatrix} 0 & 0 & \frac{1}{2} \\ 2 & -1 & -2 \\ -1 & 1 & \frac{1}{2} \end{pmatrix}_{e^{1}}$$

$$= \begin{pmatrix} -2 + 2^{99} & 1 - 2^{99} & 2 - 2^{98} \\ -2 + 2^{100} & 1 - 2^{100} & 2 - 2^{99} \\ 0 & 0 & 0 \end{pmatrix}$$

(II)
$$B^2 = BA \Rightarrow B^3 = BBA = B^2A = BAA = BA^2$$
, 因此可得 $B^{100} = BA^{99}$ 、所以

$$B^{100} = (\beta_1,\beta_2,\beta_3) = (\alpha_1,\alpha_2,\alpha_3) \\ A^{99} = (\alpha_1,\alpha_2,\alpha_3) \\ \begin{pmatrix} -2+2^{99} & 1-2^{99} & 2-2^{98} \\ -2+2^{100} & 1-2^{100} & 2-2^{99} \\ 0 & 0 & 0 \end{pmatrix} \\ + \frac{1}{2} \\ + \frac{1}{$$

$$\beta_2 = (1-2^{99})\alpha_1 + (1-2^{100})\alpha_2; \neq$$

$$\beta_3 = (2 - 2^{98})\alpha_1 + (2 - 2^{99})\alpha_2 +$$